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THE ORIENTED ELASTIC CONTINUUM AS A MODEL
FOR THE MAGNETOELASTIC BODyt

J. LENZ

Institut flir Theoretische Mechanik, Universitat Karlsruhe (TH), Karlsruhe, Germany

Abstract-The elastic continuum with a single director field is used as a model for the description of magneto­
elastic interactions in solids. the director being identified with the magnetic moment/unit mass, The theory is
formulated for a continuum of grade 2 and the field equations and boundary conditions are derived from a
variational principle. One arrives at non-symmetric stresses and couple-stresses which are of mechanical and
magnetic origin.

1. INTRODUCTION

IN CONNEXION with the development of the theory of elastic dielectrics, investigations of
the coupling of a magnetic field with a deformation field have been carried out during the
recent years.

In 1964, Tiersten [1] derived the differential equations and boundary conditions for a
non-conducting, magnetically saturated elastic medium by means of a systematic applica­
tion of the laws of continuum physics to a model consisting of an electronic spin con­
tinuum coupled to a lattice continuum. These results were later deduced by Tiersten [2]
from a variational principle. Brown [3] gives a summary of the methods used in the field
of magnetoelastic interactions. Rieder [4] pointed out that the Cosserat continuum may
serve as an appropriate model for the description of magnetoelastic effects. This model has
been applied by Alblas [5, 6] to a series of problems related to the deformation of magnetic
materials.

In this paper the magnetoelastic solid is treated as an elastic continuum with a director
field, the director being identified with the magnetic moment/unit mass. The field equations
and boundary conditions are derived from a variational principle. We shall restrict ourselves
to the case of magnetostatics and shall neglect thermodynamic effects. Besides the energy
of translation of the material points we shall introduce into the kinetic energy the energy
of the director field. We shall use the expression given in the theory of polar media for the
case of a single director whereas Alblas [5] started from a term which is known from the
theory of micromagnetics. It will be shown that for a special case the generalized moment of
inertia occurring in the director energy, may be associated with well-known physical
quantities. By means of the director energy we succeed in defining a spin density for the
material. Additionally the theory is formulated for a medium of grade 2, i.e. the specific
internal energy is a function of the second deformation gradient, besides other variables.
In such a material couple-stresses are found which are of mechanical as well as of magnetic
origin; the stress tensor becomes non-symmetric. It will be shown that the requirement of

t Extract from the author's dissertation, Universitat Karlsruhe (1970).
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invariance of the specific internal energy under rigid rotations of the spatial observer
system leads to the dynamic equations of the Cosserat continuum.

2. THE MAGNETIC AND KINEMATICAL STATE OF THE MEDIUM

Confining ourselves to the case of magnetostatics and excluding the presence of electric
fields, charges and currents, Maxwell's equation for the magnetic (Maxwell) field H valid
in the material volume VM as well as in free space VF , is given by

curlH = O. (1)

Hence the Maxwell field H may be expressed as the gradient of the magnetic scalar poten­
tial <p

H -grad<p. (2)

The boundary condition for the magnetic field H on the surface s of the material body under
the given restrictions is

nx [H] = 0, (3)

where [H] denotes, as usual, the jump across s of H from exterior to interior and n is the
exterior normal unit vector of the surface s.

The magnetic state of the material is described by means of the magnetization M, the
magnetic moment/unit volume. The macroscopic fields are linked to each other by the
magnetic constitutive equation (in Gaussian units)

B = H+4nM, (4)

where B is the magnetic induction. As the magnetization vanishes in free space, we have

B=H (5)

in vF • In the case of a deformable magnetic body it is appropriate to introduce the magnetic
moment Jl/unit mass instead of the magnetization:

1
Jl.=-M;

p
(6)

p is the mass density of the material.
In a magnetically saturated body, the magnitude of the magnetic moment/unit mass is

conserved since the mass is conserved; the magnetic moment merely undergoes a rigid
rotation. In the saturation condition

Jl . Jl = fl; const., Jl.OJl = 0 (7)

fls is the saturation value of the magnetic moment. For instance a paramagnetic body is
magnetically saturated. In the case of a ferromagnetic solid, we may identify the Weissian
domains in which the molecular magnetic moments are lined up parallely, with the mass
elements of the medium and regard Jl as the magnetic moment of the domains. Then the
rotation of the magnetic moments into the direction of the magnetic field can be described
by the presented theory, but not the motion of the domain boundaries (Bloch walls) which
in general takes place already at lower field magnitudes.
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We shall make use of the oriented elastic continuum as a model for the magnetoelastic
medium by attaching to each material point a single director which will be identified with
the magnetic moment "junit mass.

In the reference configuration at time t = to the position of a material point P is repre­
sented by means of the material coordinates X K and the magnetic moment associated with
the material point P will be denoted by p. In the deformed instantaneous configuration at
t > to the position of the same material point P is fixed by the spatial coordinates x\ and
the magnetic moment which in general will have rotated with respect to the reference
configuration, is denoted by " (Fig. 1).

x'

x'

reference configuration
( t = t.)

instantaneous configuration
(t ~ t.)

FIG. I.

When the quantities are referred to the reference configuration, their indices will be
majuscules, and when they are referred to the instantaneous configuration, their indices
will be minuscules [7].

The motion of the body is given by the one-parameter families of mappings

(8)

(9)

where the rotation of the director is independent of the displacement of the material point
to which it is attached. In order that the axiom of continuity be fulfilled it is necessary that
the Jacobian j of (8) does not vanish:

o < j = det[x~KJ < 00. (10)

The deformation of the point continuum is described by means of the (first) deformation
gradient ~K and the second deformation gradient X~KL' the semicolon denoting the total
covariant derivative [7]. The distortion of the director field is distinguished by the mag­
netization gradient Il~K (director gradient). Besides other variables, these three deforma­
tion measures will be used later as state variables in the specific internal energy. The
inclusion of the magnetization gradient allows to describe the exchange energy in ferro­
magnetic materials or to take into account a magnetic interaction which may become
significant in a body with a strong inhomogeneous distribution of magnetic moments.
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3. THE VARIATIONAL PRINCIPLE

To derive the differential equations and boundary conditions, we start with Hamilton's
principle

112 It2
t5 (T-U)dt+ t5Adt=O,

tl tl

(11)

(12)

where T is the kinetic energy of the material body, U the potential energy and liA the virtual
work of the impressed forces. In the instantaneous configuration, the field quantities x, p
and <p are varied:

x-...x+t5x,

p -... p + lip with p . t5p = O.

<p -... <p+t5<p.

The kinetic energy consists of the translational energy of the material points and the
kinetic energy of the director field:

T = I !p.t . .t dv + f !pljl. jl dv. (13)
VM VM

The director energy follows from the expression in the general case of an arbitrary number
of directors [8J by considering that only a single director occurs here, the magnetic moment!
unit mass. Since we are dealing with a rigid director, the director energy may be interpreted
as the kinetic energy of rotation of the magnetic moments. As will be shown later, we may
define a spin-or angular momentum density with the aid of the director energy. For the
sake of simplification we shall assume that the generalized moment of inertia I is constant
with respect to space and time. We shall see later that for a special case we succeed in
associating known and measurable physical quantities with the generalized moment of
inertia.

The potential energy is composed of a local or short-range part which is to contain,
besides the elastic energy, the interaction energy of the magnetic moments with the lattice
(magnetoelastic energy) and the interaction energy of adjacent magnetic moments and a
long-range part comprising the magnetic field energy in the entire space v and the inter­
action energy of the magnetic moments with the macroscopic Maxwell field in the material
volume vM • If we describe the local part of the potential energy by means of the specific
internal energy e, we obtain in the case of permanent magnetic moments:

U = I pedV-~; IH.Hdv- f H.Mdv. (14)
~ n v ~

In the general electrodynamic case the long-range electromagnetic interaction cannot be
taken into account in this simple manner. It must then be introduced into the variational
principle by the virtual work of electromagnetic forces.

The specific internal energy be the following state function:

e = £(X~K' ~KL' f.l, Ji~K' X
K

, GK), (15)

where the dependence ofe on the material coordinates X K denotes a possible inhomogeneity
of the material and the dependence on the base vectors GK of the reference configuration
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describes symbolically a possible anisotropy of the medium. According to (15) we are
dealing with an oriented hyperelastic material of grade 2.

To simplify the theory, we shall insert into the virtual work bA of the impressed forces
only the work associated with the mechanical body force f and the mechanical surface
traction t, and shall not take into account the work associated with mechanical body­
and surface couples:

bA = f f· bx dv+ t t. bx ds.
VM S

(16)

(18)

If we introduce into the variational principle the condition (7) of magnetic saturation in
the material volume VM and on the surface s of the body by means of Lagrangian multipliers
A and K, Hamilton's principle finally may be written in the form:

15 f2 dtfvM {tpf.f+fpI}i.p}dv-b f2dt{fMPBdV-~4~iH.Hdv- fVM H.MdV}

+ f2 dt{FM f· bx dv+ t
s
t. bx ds } + f2 dt{f

vM
Ap. bp dv+ t

s
Kp. bp dS} = O.

(17)

4. DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

When considering at the performance of variation that [2J

bH j = -b(q» = -(bq»,i +q>,k(bxk),j,

after some manipulations Hamilton's principle assumes the following form:

I
f

2 {i [ .. ( aB k aB.1<) ( aB k /)dt -pxj+ P;:;-y-X;K+P~X-;-KL - P~X;KX;L
f, VM uX;K uX;KL ,k uX;KL ,lk

1 ( k 1 / k) ]. f [ (aB k)+ 41l HiB -"iH,H bj +}; bx'dv+ -pljii+ PpX;K
,k VM J.l,K,k

- P ~Bi+ pHi +AJ.li] bJ.li dv + f 4
1 B~, Dq> dv + f 4

1 B~, bq> dv
uJ.l VM 1l VF 1l

f 1 ( k 1 I k) i 1. [ {( aB k /)+ VF 41l HiB -"iH,H Dj ,k bx dv+ Y
s

nk PaX~KL X;KX;L ,/

aB k aB k 1 ~ k 1 'k]} ( aB k / )-P::;--TX;K-P~X;KL+4- HjB --2 H,H bj +Dk P~x;Kx;Ln/
uX;K uX;KL 1l uX;KL

m ( aB k /) ] j 1. [( aB k) ] i+b m PaX~KL X;KX;L nkn/+t j bx ds- Y
s

PaJ.l~K X;K nk-KJ.li bJ.l ds

+ f. 4~ n/[B
l
] bq> ds - f. (p a:~:LX~KX:L)nkn,D(Dx

j
)dS} = O. (19)

Here b is the second fundamental form of the surface s which is supposed to have no edges,
Dk is the surface gradient and D(bxi) is the normal derivative of <5x i on s [9, 10].
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Before stating the field equations and boundary conditions, we shall first define the
following field tensors:

J:he local stress tensor

oc k oc k ( oc k I)
Ll.k := P~X'K+P-:1-,-X'KL - P-:1-,- X'KX'L .

I UX;K' UX;KL' UX;KL" ,/

The magnetic (Maxwell) stress tensor

1
M t := 4n(H0 B-tH. HI).

The generalized stress tensor

The hyperstress tensor

The local magnetic field

LHi := _pi [(p /~ X7K) - P:ciJ.
J1,K ,k J1

The local magnetic field tensor

(20)

(21)

(22)

(23)

(24)

k oc k
LH; := p-. X. K • (25)

°J1;K '

The Lagrangian multipliers Aand K in the differential equation and boundary condition
resulting from the variation i5p =F 0 are eliminated by forming the dyad of these equations
with p and retaining only the antisymmetric parts. When we further introduce the magnetic
spin-or angular momentum density

or in the dual vector notation
S:= Ip x fl,

we finally obtain the following differential equations and boundary conditions:

px = div t+f,

s = p x (H+LH),

div B = 0,

div Mt = 0,

div B = 0,

(26a)

(26b)

(27)

(28)

(29)

(30)

(31)

[t/]nn +Dk(h/'n,) = 0,

hik1nnn/ = 0,

J1[ iLH /n/ = 0,

n. [B] = 0.

on s

(32)

(33)

(34)

(35)
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In the first boundary condition (32) the second condition (33) has already been used and
the jump of the generalized stress tensor t across s has been defined as

[tl]nk := (t i- Ltlnk) + [Mtl]nk' (36)

To this system of field equations and boundary conditions, equations (1) and (3H5) have
to be appended.

Equation (27) is the equation of motion for the magnetoelastic body. The generalized
stress tensor t is defined as the sum of the local stress tensor Lt and the magnetic stress tensor
Mt, from the divergence of which the magnetic body force

Mf := div Mt = (M. grad)H (37)

follows. The antisymmetric part (- MrA) of the magnetic stress tensor to which the dual
vector MI may be appointed, yields the magnetic body couple

MI = Mx H. (38)

The field equation (28) represents the equation of magnetic angular momentum (balance
of moment of momentum for the spin continuum): the time rate of the spin density equals
the torque on the magnetic moment Jl in the field (H+LB).

Equation (29) or (31) is the Maxwell equation for the magnetic induction B.
Since the magnetization vanishes in free space, equation (30) is identically fulfilled

according to (37).
Equations (32H35) represent boundary conditions on the surface of the material body

for the generalized stress tensor, the hyperstress tensor, the local magnetic field tensor and
the magnetic induction.

5. THE EQUAnON OF MOMENT OF MOMENTUM

The field equation (28) can be expressed in another form which is more familiar to con­
tinuum mechanics. If we require that the specific internal energy is invariant under rigid
rotations of the spatial observer system, from a theorem of Weyl [11] follows that 8 must
satisfy the condition

~kl ~kl ~kl ~kl_OX;K+ X;KL +0 JJ- +0 JJ-;K - .
OX1i;K OX1i;KL JJ-[i JJ-li;K

It is then easy to verify that

holds. We now define the couple-stress tensor

mikl := hlikll + LHlillJJ-kl,

(39)

(40)

(41)

where to the first term known from the materials of grade 2, an additional part has been
added which is brought about by the dependence of the internal energy on the magnetiza­
tion gradient. Replacing the right side of (40) by the time rate of the spin density according
to (28), we finally obtain

(42)
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In the case of vanishing spin density (i.e. vanishing director energy) this form of the equa­
tion of moment of momentum reduces to the Cosserat equation

(43)

(44)

which links the antisymmetric part of the stress tensor to the divergence of the couple-stress
tensor. Consequently, in the case of a symmetric generalized stress tensor (vanishing spin
density and vanishing divergence of the couple-stress tensor) the antisymmetric part of the
local stress tensor must equal the negative of the antisymmetric part of the Maxwell stress
tensor (38).

From micromagnetics the equation of angular momentum is known in the form [12]

1 .
--p. = p. x H eff ,

y

where y is the gyromagnetic ratio and Heff the so-called effective magnetic field intensity.
Let us now consider the simple special case

fJ = w x p., (45)

where w is the constant vector of angular velocity of the Larmor precession. We then have

p. x ii = -(w. p.)fJ· (46)

Substituting this result into the equation (28) of angular momentum and identifying Herr
with the field (H+LH) yields

oS = Ip.xii = -I(w·p.)fJ = P.XHeff ,

and by comparison of coefficient with equation (44) we find

(47)

(48)I =~_1_.
y w.p.

Thus in the special case of the Larmor precession the generalized moment of inertia can be
determined from the gyromagnetic ratio, the Larmor frequency and the magnetic moment!
unit mass.

Alblas [5] has shown how to arrive at the Einstein-<le Haas effect by formulating the
balance of moment of momentum for the whole body.

6. THE SPECIFIC INTERNAL ENERGY AND CONSTITUTIVE EQUATIONS

The invariance of the specific internal energy under the group of Euclidean displace­
ments of the spatial observer frame [principle of objectivity; the invariance of s under a
rigid rotation has already been used to derive (39)] implies that s cannot depend on the
spatial coordinates xk and on time t, as has already been assumed in (15) and that the
specific internal energy can be expressed as [1, 9]

(49)
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where the following 36 variables have been defined:

1243

(50)

(51)

(52)

(53)

Here the anisotropy of the material is described with the aid of the material tensors
H:LM

... (IX is an enumerative index) introduced by Toupin [13] (in place of the base vectors
GK of the reference configuration). They are invariant tensors of the group characterizing
the point symmetry of the material in the reference configuration. In a homogeneous
material these tensors are spatially constant.

Instead of Green's deformation tensor CKL the Lagrangian deformation tensor EKL
may be employed:

(54)

Tiersten [1) has shown that the number of variables can be further reduced if the terms in
the specific internal energy containing the magnetization gradient, are identified with the
exchange energy [3) which produces the parallel alignment of the magnetic moments
within the domains of a ferromagnetic solid. The invariance of the exchange energy under
a rigid rotation of the spin system with respect to the lattice (known from the quantum
mechanical description) leads to a reduction of the number of variables by 3, as in the
place of the variable DKL the symmetric tensor variable

-1

M KL := DKPcPQDLQ

can be introduced into the specific internal energy:

(55) .

(56)

In a ferromagnetic material of grade 1 with which we shall deal in closing, the specific
internal energy depends on the 15 variables N K , EKL and M KL [14]:

(57)

The specific internal energy given, the constitutive equations for the local stress tensor and
the local magnetic field can be calculated:

H i _ 2 { os k j} as j
L - - p aM X;KJl;L - :IN X;K'

P KL .k()K

(58)

(59)
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For the specific internal energy of a ferromagnetic material we may for instance take the
following polynomial approximation:

PoS = HfLNKNL+H~LMKL+H~LMEKLNM+H~LMNEKLNMNN+H~LMNEKLEMN

+H~LMNEKLMMN' (60)

where the material tensors have been used as coefficients of the polynomial and have the
following physical meaning:

HI' (magnetic) anisotropy tensor;
H 2 , exchange tensor;
H3' piezomagnetic tensor;
H 4 , magnetostriction tensor;
H s, elasticity tensor;
H 6 , exchangestriction tensor.

As H 3 = 0 for an isotropic materia~ the theory yields the known fact that the piezo­
magnetic effect is found only in anisotropic media,

Brown [3J states the following polynomial approximation for the local (free) energy/
unit mass of a ferromagnetic body:

F = Fex+F(NK,EKL),

where the exchange energy/unit mass is given by

(61)

(62)1 1 KL KLMN M )PoFex = 22 (H 2 M KL +H 6 EKL MN,
J1s

when using our nomenclature, which corresponds with the expression (60) given above.
Bya suitable choice of a polynomial for the specific internal energy the known constitu­

tive equations for the magnetoelastic body and extensions or generalizations of these
constitutive equations may be obtained, t
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A6cTpaKT-McnOJIb3yeTcli ynpyrall CnJIOlllHali cpe,l\a, C O,l\MHapHbIM nOJIeM naccMBHoro ,l\MnOJIlI, B CMblCJIe
MO,l\eJIH ,l:\JIli om.\caHMII MafHHTHoynpyroro B3aMMO,l\eil:cTBHII B TBep,l\blX TeJIax. naccMBHblil: ,l:\MnOJIb
YTO)K,l:\eCMBJIlieTCII C MafHMTHblM MOMeHTOM Ha e,l:\MHMl.\y MblCCbI. npe,l:\JIaraeTCli TeopHli Mil CnJIOlllHoil:
cpe,l:\b1 nOpll,l\Ka 2. Onpe,l\eJIIIIOTCli ypaBHeHHlI nOJIeA H rpaHH'IHbIe yCJlOBMll, HCXO,l:\ M3 BapHaUMOHHoro
npMHl.\lma. 3TO nptlBO,l\HT K HeCMMl.\eTpH'IeCKHM n1.\Mpll)KCeMl.\31.\ H MOMeHTHblM Hanpll)KeHHIIM, KOTOpblX
npOMCXO)K,l:\eHMe 3aBMcaT OT MexaHlflleCKHX H MarHHTHblX CBOil:CTB cpe,l:\bl.


